A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models

نویسندگان

  • Gitae Kim
  • Bongsug Kevin Chae
  • David L. Olson
چکیده

Customer response is a crucial aspect of service business. The ability to accurately predict which customer profiles are productive has proven invaluable in customer relationship management. An area that has received little attention in the literature on direct marketing is the class imbalance problem (the very low response rate). We propose a customer response predictive model approach combining recency, frequency, and monetary variables and support vector machine analysis. We have identified three sets of direct marketing data with a different degree of class imbalance (little, moderate, high) and used random undersampling method to reduce the degree of the imbalance problem. We report the empirical results in terms of gain values and prediction accuracy and the impact of random undersampling on customer response model performance. We also discuss these empirical results with the findings of previous studies and the implications for industry practice and future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Between Selective Sampling and Random Undersampling for Classification of Customer Defection Using Support Vector Machine

Corresponding Author: Heri Kuswanto Department of Statistics, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia Email: [email protected] Abstract: Quality of a product determines the customer loyalty and it can be measured by conducting a survey. Company ‘X’ that sells three kinds of product (low, medium and high price) collected very large dataset through an online surve...

متن کامل

Combine Vector Quantization and Support Vector Machine for Imbalanced Datasets

In cases of extremely imbalanced dataset with high dimensions, standard machine learning techniques tend to be overwhelmed by the large classes. This paper rebalances skewed datasets by compressing the majority class. This approach combines Vector Quantization and Support Vector Machine and constructs a new approach, VQ-SVM, to rebalance datasets without significant information loss. Some issue...

متن کامل

Application of Support Vector Machine Regression for Predicting Critical Responses of Flexible Pavements

This paper aims to assess the application of Support Vector Machine (SVM) regression in order to analysis flexible pavements. To this end, 10000 Four-layer flexible pavement sections consisted of asphalt concrete layer, granular base layer, granular subbase layer, and subgrade soil were analyzed under the effect of standard axle loading using multi-layered elastic theory and pavement critical r...

متن کامل

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

Distributed customer behavior prediction using multiplex data: A collaborative MK-SVM approach

In the customer-centered marketplace, the understanding of customer behavior is a critical success factor. The big databases in an organization usually involve multiplex data such as static, time series, symbolic sequential and textual data which are separately stored in different databases of different sections. It poses a challenge to traditional centralized customer behavior prediction. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013